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Abstract15

We color the vertices of each of the edges of a C−hypergraph (or cohyper-16

graph) in such a way that at least two vertices receive the same color and in17

every proper coloring of a B−hypergraph (or bihypergraph), we forbid the18

cases when the vertices of any of its edges are colored with the same color19

(monochromatic) or when they are all colored with distinct colors (rainbow).20

In this paper, we determined explicit formulae for the chromatic polynomials21

of C−hypercycles and B−hypercycles.22
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1. Introduction and Definitions25

For basic definitions and terminology we refer the reader to [2, 6, 18]. A hy-
pergraph H of order n is an ordered pair H=(X, E), where |X| = n is a finite
nonempty set of vertices and E is a collection of not necessarily distinct non
empty subsets of X called (hyper)edges. H is said to be k−uniform, if the size
of each of its edges is exactly k. A hypergraph is said to be linear if each pair of
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edges has at most one vertex in common. The degree of a vertex v is the number
of edges containing v. A hyperleaf is a hyperedge which contains exactly one
vertex of degree 2. In this paper all hypergraphs are assumed to be connected,
linear and k−uniform unless stated otherwise. A linear hypercycle of length l is
a hypergraph induced by a set of edges {e1, . . . , el} (l ≥ 3) where

|ei ∩ ej | =

{
1 if j = i + 1 or {i, j} ∈ {1, l}
0 otherwise.

We note that the term elementary hypercycle has also been used for linear26

hypercycle by Tomescu [15]. A (linear) hypercycle of length 2 induced by the set27

of edges {e1, e2} can be defined where |e1 ∩ e2| = 2. In the case where l = 2 and28

k = 2 we allow for a loop, but our results are concerned with k > 2 where the29

hypercycle of length 2 is a meaningful example. (See Example 1.1).30

An l−unicyclic hypergraphH=(X, E) is a hypergraph in which there is exactly31

one set {e1, . . . , el} which induces a hypercycle. A hypergraph which does not32

contain a hypercycle as a subhypergraph is called acyclic.33

The concept of mixed-hypergraph coloring has been studied extensively by34

Voloshin et al. [9, 10, 18]. A mixed hypergraph H with vertex set X is a35

triple (X, C,D) such that C and D are subsets of X, called C−(hyper)edges and36

D−(hyper)edges, respectively. Elements of C ∩ D are called B−(hyper)edges (or37

bi-edges). A proper coloring of H is a coloring of X such that each C−edge has at38

least two vertices with a Common color and each D−edge has at least two vertices39

with Distinct colors. Given the mixed hypergraph H = (X, C,D), when C = ∅, we40

write H = (X,D) and call it a D−hypergraph (or hypergraph). In the case when41

D = ∅, we write H = (X, C) and call the mixed hypergraph a C−hypergraph42

(or cohypergraph). In the case when C = D, we write H = (X,B) and call it a43

B−hypergraph (or bihypergraph). Several important results and open problems44

about mixed hypergraphs and bihypergraphs can be found in [7, 8, 11, 12, 13, 14].45

Example 1.1. A hypercycle of length 2.46

Let H3
2=(X, E) where X = {v1, v2, v3, v4} and E = {e1, e2} with e1 =47

{v1, v2, v3} and e2 = {v1, v2, v4}. Then Figure 1 is a representation of H3
2.48

The chromatic polynomial P (H, λ) of a mixed hypergraph H is the function49

that counts the number of proper λ−colorings, which are mappings, f : X →50

{1, 2, . . . , λ} with the condition that every C−edge has at least two vertices with51

a Common color and every D−edge has at least two vertices with Distinct colors.52

We encourage the reader to refer to [9, 10, 18] for detailed information about53

chromatic polynomials, research, and applications of mixed hypergraph colorings.54

For simplicity, throughout this paper, we will denote by Hk
l = (X, E), a55

linear k−uniform hypergraph of length l, where |E|=l. We also denote the falling56
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v2

v3
v4

e2

e1

Figure 1. Linear 3-uniform hypercycle of length 2

factorial λ(t) = λ(λ − 1)(λ − 2) . . . (λ − t + 1). Further, we define the following57

parameters γ(i) = γk(λ, i) = (λ − i)(k−i) and ζ(i) = ζk(λ, i) = λk−i − γk(i) with58

0 ≤ i ≤ k. The values of these parameters with i = 1 and i = 2 play a recurring59

role in the formulas of this paper, and we conjecture that the values for i > 2 will60

play a role in the corresponding formulas for non-linear mixed hypergraphs. Note61

that γ(i) counts the number of rainbows formed using k − i vertices and λ − i62

colors and ζ(i) counts the number of ways to color k − i vertices so that either63

at least two of the k − i vertices receive the same color from the λ− i colors, or64

at least one of the k − i vertices receives one of the other i specified colors.65

2. The chromatic polynomials of some acyclic mixed hypergraphs66

Theorem 1. Let Πk
l = (X, C) be a k−uniform linear connected acyclic C−hypergraph67

of length l. Then P (Πk
l , λ) = λ(ζ(1))l.68

Proof. We proceed by induction on l.69

For l = 1, consider the only edge e ∈ C. There are λ ways to color each70

of its k vertices, giving λk colorings in total. But of these, exactly λ(k) assign71

distinct colors to all k vertices. So the total number of proper λ−colorings is72

λk − λ(k) = λ(λk−1 − (λ− 1)(k−1))1.73

Assume the above formula is true for any k−uniform acyclic hypergraph74

with at most l − 1 edges, for some l ≥ 2. Let Πk
l = (X ′, E ′) a k−uniform acyclic75

hypergraph with l edges. Since Πk
l is acyclic, it contains a hyperleaf, say e1. Let76

Πk
l−1 be the connected acyclic hypergraph Πk

l − e1. Thus, Πk
l−1 = (X ′′, E ′′) is77

a k−uniform acyclic hypergraph with l − 1 edges where E ′′ = E ′ − e1. By the78

inductive hypothesis, P (Πk
l−1, λ) = λ(λk−1 − (λ− 1)(k−1))l−1. Since Πk

l is linear,79

and e1 is a hyperleaf, X ′′ ∩ e1 is a single vertex v. For each coloring f of the80
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P (Πk
l−1, λ) proper colorings of Πk

l−1, there exist λk−1 − (λ − 1)(k−1) colorings of81

X(e1) \ v in which not all vertices have distinct colors to f(v). This produces82

all (λk−1 − (λ − 1)(k−1))P (Πk
l−1, λ) = λ(λk−1 − (λ − 1)(k−1))l = λ(ζ(1))l proper83

colorings of Πk
l .84

85

Remark 2. Most of the formulas in this paper are proven with an inductive86

argument similar to that of Theorem 1. We leave those inductive arguments to87

the reader and will indicate the place for the argument by ending subsequent88

proofs with, ”the result follows by induction on l.”89

Theorem 3. Let Πk
l = (X,B) be a k−uniform linear connected acyclic B−hypergraph90

of length l. Then P (Πk
l , λ) = λ(ζ(1) − 1)l.91

Proof. Consider l = 1. There are λk ways to color each of its vertices while92

exactly λ assign the same color to all vertices and λ(k) assign different colors to93

all k vertices of Πk
l . Hence there are exactly λk−λ(k)−λ = λ(λk−1−(λ−1)(k−1)−1)94

ways to color the edge so that not all of its vertices are either colored with the95

same or with different colors. The result follows by induction on l.96

Theorem 4. Let Πk
l =(X,D) be a k−uniform linear connected acyclic D−hypergraph.97

Then P (Πk
l , λ) = λ(ζ(1) + γ(1) − 1))l.98

Proof. Consider the case when l = 1 and name the edge e. There are λk ways99

to color each of its vertices while exactly λ assign the same color to all vertices,100

bringing the number of proper λ-colorings to λk − λ = λ(λk−1 − 1)1. The result101

follows by induction on l.102

Corollary 1. Let Πk
l = (X, C,D) be a k−uniform linear connected acyclic mixed103

hypergraph. Then P (Πk
l , λ) = λ (γ(1))p1 (ζ(1) − 1)p2 (ζ(1) + γ(1) − 1)p3 where104

|C − D| = p1, |B| = |C ∩ D| = p2 and |D − C| = p3.105

Proof. The result follows from induction on l = p1 +p2 +p3, by first considering106

the edges of C − D, then the edges of B, and finally the edges of D − C.107

3. The chromatic polynomials of some cyclic hypergraphs of108

lengths 2 and 3109

Theorem 5. Let Hk
2 = (X, C) be a k−uniform C−hypercycle of length 2. Then

P (Hk
2 , λ) = λn−1 + λ(2)(ζ(2))2.
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Proof. Let Hk
2 = (X, C) be a k−uniform linear hypercycle induced by the set of110

edges {c1, c2}. Consider their two vertices of degree 2, say, v1 and v2. In each111

proper coloring of Hk
2 , one of the following is true.112

(i) f(v1) = f(v2).113

There are λ ways to color both vertices. Then the remaining k−2 vertices of
each edge can be properly colored in λk−2 ways. Hence the number of colorings
is

λ(λk−2)2. (1)

(ii) f(v1) ̸= f(v2).114

There are λ(λ−1) different ways to color both vertices. But there are (λk−2−
(λ−2)(k−2))2 ways to color the remaining vertices of each edge, giving the number
of colorings

λ(λ− 1)(λk−2 − (λ− 2)(k−2))2. (2)

By combining 1 and 2 we obtain115

P (Hk
2 , λ) = λ2k−3 + λ(λ− 1)(λk−2 − (λ− 2)(k−2))2 (3)

as desired.116

117

Theorem 6. Let Hk
2 = (X,B) be a k−uniform B−hypercycle of length 2. Then

P (Hk
2 , λ) = λ (ζ(2) + γ(2) − 1)2 + λ(2)(ζ(2))2.

Proof. This proof is very similar to the one in Theorem 5. Let Hk
2 = (X,B)118

be a k−uniform linear hypergraph induced by the set of edges {b1, b2}. Consider119

their two vertices of degree 2, say, v1 and v2. In each proper λ−coloring of Hk
2 ,120

one of the following is true.121

(i) f(v1) = f(v2).122

There are λ ways to color both vertices. Then the remaining k − 2 vertices
of each edge can be properly colored in λk−2 − 1 ways. Hence the number of
colorings is

λ(λk−2 − 1)2. (4)

(ii) f(v1) ̸= f(v2).123

There are λ(λ−1) different ways to color both vertices. But there are (λk−2−
(λ−2)(k−2))2 ways to color the remaining vertices of each edge, giving the number
of colorings

λ(λ− 1)(λk−2 − (λ− 2)(k−2))2. (5)

By combining 4 and 5 we obtain that124

P (Hk
2 , λ) = λ(λk−2 − 1)2 + λ(λ− 1)(λk−2 − (λ− 2)(k−2))2. (6)

125
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Example 2.1. A proper 3-coloring of a linear 3-uniform C−hypercycle of126

length 3.127

Let H3
3=(X, C) where X = {v1, v2, v3, v4, v5, v6} and C = {c1, c2, c3} with c1 =128

{v1, v3, v4}, c2 = {v1, v2, v5} and c3 = {v2, v3, v6}. Figure 2 is a representation129

of H3
3, a linear 3-uniform hypercycle of length 3. Letting for instance f(v1) =130

f(v4) = 1, f(v2) = f(v5) = 2, and f(v3) = f(v5) = 3, we have a proper 3-coloring131

of H3
3.132

v1

v5

v2
v4

v3
v6

c1

c3

c2

Figure 2. Linear 3-uniform C−hypercycle of length 3

Theorem 7. Let Hk
3 = (X, C) be a k−uniform C−hypercycle of length 3. Then133

P (Hk
3 , λ) = λn−2 + 3λ(2)(λk−2)(ζ(2))2 + λ(3)(ζ(2))3.134

Proof. Let Hk
3 = (X, C) be a k−uniform linear hypergraph induced by the set135

of edges {c1, c2, c3}. Consider the three intersecting vertices v1, v2, v3 such that136

c1 ∩ c2 = {v1}, c2 ∩ c3 = {v2}, c3 ∩ c1 = {v3}. In each proper λ−coloring of Hk
3 ,137

one of the following is true.138

(i) All three vertices v1, v2, v3, have the same color.139

There are λ ways to color the three vertices. Then the remaining k − 2
vertices of each edge can be properly colored in λk−2 ways. Hence the number of
colorings is

λ(λk−2)3. (7)
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(ii) Two colors are used to color these three vertices.140

Suppose f(v1) ̸= f(v2) = f(v3). Then there are λ(λ − 1) ways to color
the three vertices. Now there are λk−2 ways to color the remaining vertices of c3
(which does not contain v1) while there are (λk−2−(λ−2)(k−2))2 ways to color the
remaining vertices of c1 and c2 (which contain v1). Since there are three different
ways of choosing the one vertex of different color, the number of colorings is

3λ(λ− 1)(λk−2)(λk−2 − (λ− 2)(k−2))2. (8)

(iii) All three vertices v1, v2, v3, have different colors.141

There are λ(λ − 1)(λ − 2) different ways to color the three vertices. There
are (λk−2 − (λ− 2)(k−2))3 ways to color the remaining vertices of each edge. The
total number of colorings in this case is

λ(λ− 1)(λ− 2)(λk−2 − (λ− 2)(k−2))3. (9)

Now we combine (7), (8), and (9) to obtain the desired result.142

Theorem 8. Let Hk
3 = (X,B) be a k−uniform B−hypercycle of length 3. Then143

P (Hk
3 , λ) = λ (ζ(2) + γ(2) − 1)3 + 3λ(2) (ζ(2) + γ(2) − 1) (ζ(2))2 + λ(3)(ζ(2))3.144

Proof. Using similar steps as in the proof of Theorem 7, we obtain that λ(λk−2−145

1)3+3λ(λ−1)(λk−2−1)(λk−2−(λ−2)(k−2))2+λ(λ−1)(λ−2)(λk−2−(λ−2)(k−2))3,146

giving the desired result.147

148

The chromatic polynomials of mixed hypergraphs are often computed using149

a recursive algorithm, commonly known as splitting-contraction [18]. To derive150

an explicit form for such formulas using the splitting-contraction algorithm is at151

least ♯P-hard. However, using some combinatorial and recursive arguments, we152

obtained some (albeit not so simple) forms of these polynomials. These gener-153

alized formulas are presented in the next section and are built on the chromatic154

polynomials of the cyclic mixed hypergraphs already discussed in this section.155

4. Chromatic polynomials of cyclic hypergraphs of arbitrary156

length157

Theorem 9. Let Hk
l = (X,D) be a k−uniform D−hypercycle. Then158

P (Hk
l , λ) = (λ− 1)l

(
k−2∑
i=0

λi

)l

+ (−1)l(λ− 1) for all l ≥ 2.159
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One of the authors proved this theorem in [1] and it has been established160

independently by Borowiecki and  lazuka, as Walter pointed out in [19], simply161

because162

(λ− 1)l(

k−2∑
i=0

λi)l + (−1)l(λ− 1) =

(
(λ− 1)

k−2∑
i=0

λi

)l

+ (−1)l(λ− 1) = (λk−1−163

1)l + (−1)l(λ− 1).164

A considerable amount of literature has been written concerning the chro-165

matic polynomials of certain families of D−hypergraphs by Borowiecki et al. and166

Tomescu et al., just to name a few researchers [3, 4, 5, 15]. However, very little167

is known about these formulas as they relate to mixed hypergraphs in general,168

particularly, the C−hypergraphs and B−hypergraphs. We present here some new169

results about these particular members of mixed hypergraphs.170

Theorem 10. Let Hk
l = (X, C) be a k−uniform C−hypercycle of length l ≥ 3.

Then
P (Hk

l , λ) = ζ(2)P (Πk
l−1, λ) + γ(2)P (Hk

l−1, λ) (10)

where Πk
l is a k−uniform linear connected acyclic C−hypergraph of length l ≥ 3.171

Proof. Let Hk
l = (X, E) be any k−uniform C−hypercycle of length l ≥ 3 induced172

by the set of edges {c1, . . . , cl}. Let u and v be the two vertices of degree 2 in cl.173

In any proper coloring of the edge cl using at most λ colors, either (i) u and v174

have the same color, or (ii) u and v have different colors. We therefore count the175

number of such colorings for each case in turn.176

Case (i) There are λk−2 ways to color the remaining k−2 vertices in cl\{u, v}177

so that at least two vertices receive the same color, and there are P (Hk
l−1, λ)178

ways to color the remaining vertices so that f(u) = f(v). Hence, there are179

λk−2P (Hk
l−1, λ) colorings.180

Case (ii) Let Πk
l−1 be the hyperpath of length l − 1 induced by {c1, . . . , cl−1}.

There are λk−2− (λ− 2)(k−2) colorings of the vertices in cl\{u, v}. For each such
coloring, the number of colorings of the remaining vertices is

P (Πk
l−1, λ) − P (Hk

l−1, λ),

since the first term counts the number of colorings where u and v may have the
same or different colors, and the second term counts the number of colors where
u and v have the same color. So there are(

λk−2 − (λ− 2)(k−2)
)
P (Πk

l−1, λ) + (λ− 2)(k−2)P (Hk
l−1, λ)

colorings altogether.181

182
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Corollary 2. Let Hk
l = (X, C) be a k−uniform C−hypercycle of length l ≥ 3.

Then

P (Hk
l , λ) = (γ(2))l−2λ2k−3 + λζ(2)

l−2∑
j=1

(γ(2))j−1(ζ(1))l−j + λ(2)(ζ(2))2(γ(2))l−2.

Proof. When l = 2, the middle term is set to zero to yield P (Hk
2 , λ) = λ2k−3 +

λ(2)(ζ(2))2, which becomes the basis of the recursive argument for the proof.
When l = 3, the formula in Theorem 7 can be expanded (although messy) to
support this result. Now, for l ≥ 3, we obtain from (10) that

P (Hk
l , λ) = (γ(2))l−2P (Hk

2 , λ) + ζ(2)

l−2∑
j=1

(γ(2))j−1P (Πk
l−j , λ).

Using Theorems 1 and 5, we obtain the result after substitution.183

184

Theorem 11. Let Hk
l = (X,B) be a k−uniform B−hypercycle of length l ≥ 3.

Then
P (Hk

l , λ) = ζ(2)P (Πk
l−1, λ) + (γ(2) − 1)P (Hk

l−1, λ) (11)

where Πk
l−1 is a k−uniform linear connected acyclic B−hypergraph.185

Proof. Let Hk
l = (X,B) be any k−uniform B−hypercycle of length l induced186

by the set of edges {b1, . . . , bl} (l ≥ 3). Let u and v be the 2 vertices of degree187

2 in bl. In any proper coloring of the edge bl using λ−colors, either (i) u and v188

have the same color, or (ii) u and v have different colors. We therefore count the189

number of such colorings for each case in turn.190

Case (i) There are λk−2 − 1 ways to color the remaining k − 2 vertices in191

bl\{u, v} so that at least two vertices (of the remaining k − 2 vertices) receive192

different colors, and there are P (Hk
l−1, λ) ways to color the remaining vertices so193

that f(u) = f(v). Hence, there are (λk−2 − 1)P (Hk
l−1, λ) colorings.194

Case (ii) Let Πk
l−1 be the hyperpath of length l − 1 induced by {b1, . . . , bl−1}.

There are λk−2− (λ− 2)(k−2) colorings of the vertices in bl\{u, v}. For each such
coloring, the number of colorings of the remaining vertices is

P (Πk
l−1, λ) − P (Hk

l−1, λ),

since the first term counts the number of colorings where u and v may have the
same or different colors, and the second term counts the number of colors where
u and v have the same color. So there are(

λk−2 − (λ− 2)(k−2)
)
P (Πk

l−1, λ) +
(

(λ− 2)(k−2) − 1
)
P (Hk

l−1, λ)

colorings altogether.195
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Corollary 3. Let Hk
l = (X,B) be a k−uniform B−hypercycle of length l ≥ 3.196

Then P (Hk
l , λ) = λ(ζ(2) +γ(2)−1)2(γ(2)−1)l−2 +λζ(2)

l−2∑
j=1

(γ(2)−1)j−1(ζ(1)−197

1)l−j + λ(2)(ζ(2))2(γ(2) − 1)l−2.198

Proof. When l = 2, the middle term is set to zero to yield P (Hk
2 , λ) = λ (ζ(2) + γ(2) − 1)2+199

λ(2)(ζ(2))2, which becomes the basis of the recursive argument for the proof just200

as in the previous corollary. For l ≥ 3, we obtain from (11) that P (Hk
l , λ) =201

(γ(2) − 1)l−2P (Hk
2 , λ) + ζ(2)

l−2∑
j=1

(γ(2) − 1)j−1P (Πk
l−j , λ). Using Theorems 3 and202

6, we obtain the desired formula.203

These results obtained in this section can easily be rewritten to obtain the204

chromatic polynomials of several other families of linear connected uniform hyper-205

graphs. In particular the chromatic polynomials of unicyclic mixed hypergraphs206

and mixed hypercacti [9] can be written and are left as exercises for the reader.207

As it is, rewriting these formulas in terms of the standard basis is doable but208

messy. Further work could look for simpler forms for these expressions or address209

the remaining open problems of interpreting the coefficients of these polynomials210

and finding their roots.211

Furthermore, by using γ and ζ as functions of |e| (i.e., of any value other than212

just k), it is reasonable to extend the formulas discussed in this paper to non-213

uniform mixed hypergraphs (see Corollary 4). Recently, Walter [19] has found214

the formulas for some non-uniform D−hypergraphs. As a step in this direction,215

we close this paper with a more general result concerning non-uniform acyclic216

mixed hypergraphs.217

It is easy to verify that the chromatic polynomials of an isolated hyperedge,218

cohyperedge and bihypereredge are as follows.219

Proposition 1. Let e be an isolated hyperedge. Then the chromatic polynomials
of e when viewed as a D−hyperedge, C−hyperedge, or B−hyperedge are

PD(e) = λ(λ|e|−1 − 1)

PC(e) = λ(λ|e|−1 − (λ− 1)|e|−1) = λζ|e|(1)

PB(e) = λ(λ|e|−1 − (λ− 1)|e|−1 − 1) = λ(ζ|e|(1) − 1)

(12)

respectively.220

For instance, the case when e ∈ D, there are λ|e| − λ = λ(λ|e|−1 − 1) ways to221

properly color each hyperedge.222

From (12), we can extend Corollary 1 (following the argument used in The-223

orem 1) to obtain the following.224
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Corollary 4. Let H = (X, C,D) be an acyclic mixed hypergraph. Then the225

chromatic polynomial of any (non-uniform) acyclic mixed hypergraph is given by226

227

P (H) = λ
∏

e1∈D,e2∈C
e3∈B

(λ|e1|−1 − 1)ζ|e2|(1)(ζ|e3|(1) − 1).228
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